首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:The Root of Polygonum multiflorum Thunb. Alleviates Non-Alcoholic Steatosis and Insulin Resistance in High Fat Diet-Fed Mice
  • 本地全文:下载
  • 作者:Soonwoong Jung ; Hyeonwi Son ; Chung Eun Hwang
  • 期刊名称:Nutrients
  • 电子版ISSN:2072-6643
  • 出版年度:2020
  • 卷号:12
  • 期号:8
  • 页码:2353-2365
  • DOI:10.3390/nu12082353
  • 出版社:MDPI Publishing
  • 摘要:Non-alcoholic steatosis and insulin resistance are critical health problems and cause metabolic complications worldwide. In this study, we investigated the molecular mechanism of Polygonum multiflorum Thunb. (PM) against hepatic lipid accumulation and insulin resistance by using in vitro and in vivo models. PM extract significantly attenuated the accumulation of lipid droplets and hepatic triglyceride in free fatty acid (FFA)-exposed HepG2 cells. PM extract increased the AMPK and ACC phosphorylation and GLUT4 expression, whose levels were downregulated in FFA-exposed cells. PM extract also decreased precursor and mature forms of SREBP-1 in FFA-exposed cells. C57BL/6 mice fed with normal diet (ND) or high-fat diet (HFD) were administered PM extract (100 mg/kg) or vehicle orally for 16 weeks. PM extract attenuated the increases of the epididymal and perirenal fats on HFD feeding. PM extract markedly reduced hepatic lipid accumulation and fasting glucose levels, and improved glucose and insulin sensitivity in HFD-fed mice. HFD-fed mice decreased the AMPK and ACC phosphorylation and GLUT4 expression, and increased precursor and mature forms of SREBP-1; these changes were significantly restored by PM extract. In conclusion, PM extract alleviates non-alcoholic steatosis and insulin resistance through modulating the expression of proteins on lipid metabolism and glucose transport in the liver.
  • 关键词:high-fat diet; insulin resistance; lipid; non-alcoholic steatosis; Polygonum multiflorum high-fat diet ; insulin resistance ; lipid ; non-alcoholic steatosis ; Polygonum multiflorum
国家哲学社会科学文献中心版权所有