首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:Comparison of Faba Bean Protein Ingredients Produced Using Dry Fractionation and Isoelectric Precipitation: Techno-Functional, Nutritional and Environmental Performance
  • 本地全文:下载
  • 作者:Martin Vogelsang-O’Dwyer ; Iben Lykke Petersen ; Marcel Skejovic Joehnke
  • 期刊名称:Foods
  • 电子版ISSN:2304-8158
  • 出版年度:2020
  • 卷号:9
  • 期号:3
  • 页码:322-345
  • DOI:10.3390/foods9030322
  • 出版社:MDPI Publishing
  • 摘要:Dry fractionated faba bean protein-rich flour (FPR) produced by milling/air classification, and faba bean protein isolate (FPI) produced by acid extraction/isoelectric precipitation were compared in terms of composition, techno-functional properties, nutritional properties and environmental impacts. FPR had a lower protein content (64.1%, dry matter (DM)) compared to FPI (90.1%, DM), due to the inherent limitations of air classification. Of the two ingredients, FPR demonstrated superior functionality, including higher protein solubility (85%), compared to FPI (32%) at pH 7. Foaming capacity was higher for FPR, although foam stability was similar for both ingredients. FPR had greater gelling ability compared to FPI. The higher carbohydrate content of FPR may have contributed to this difference. An amino acid (AA) analysis revealed that both ingredients were low in sulfur-containing AAs, with FPR having a slightly higher level than FPI. The potential nutritional benefits of the aqueous process compared to the dry process used in this study were apparent in the higher in vitro protein digestibility (IVPD) and lower trypsin inhibitor activity (TIA) in FPI compared to FPR. Additionally, vicine/convicine were detected in FPR, but not in FPI. Furthermore, much lower levels of fermentable oligo-, di- and monosaccharides, and polyols (FODMAPs) were found in FPI compared to FPR. The life cycle assessment (LCA) revealed a lower environmental impact for FPR, partly due to the extra water and energy required for aqueous processing. However, in a comparison with cow’s milk protein, both FPR and FPI were shown to have considerably lower environmental impacts.
  • 关键词:faba bean; protein; dry fractionation; isoelectric precipitation; functional properties; FODMAPs; antinutrients; nutrition; carbon footprint; life cycle assessment faba bean ; protein ; dry fractionation ; isoelectric precipitation ; functional properties ; FODMAPs ; antinutrients ; nutrition ; carbon footprint ; life cycle assessment
国家哲学社会科学文献中心版权所有