摘要:The cationic surfactant Lauric arginate (LAE) has gained approval for utilization in meat products (limit: 200 mg/kg). However, as for other antimicrobials, its activity is reduced when applied to complex food matrices. The current study therefore aims to better understand protein-antimicrobial agent-interactions and their influence on the antimicrobial activity of (i) LAE and (ii) methylparaben against Listeria innocua and Pseudomonas fluorescens in defined model systems (pH 6). Antimicrobials were utilized alone or in combination with nutrient broth containing either no protein or 2% bovine serum albumin, whey protein isolate, or soy protein hydrolysate. LAE was found to form complexes with all proteins due to electrostatic attraction, determined using microelectrophoretic and turbidity measurements. Minimal lethal concentrations of LAE were remarkably increased (4–13 fold) in the presence of proteins, with globular proteins having the strongest impact. Combinations of LAE (0–200 µg/mL) with the less structure-sensitive component methylparaben (approved concentration 0.1%) remarkably decreased the concentrations of LAE needed to strongly inhibit or even kill both, L. innocua and P. fluorescens in the presence of proteins. The study highlights the importance of ingredient interactions impacting microbial activity that are often not taken into account when examining antimicrobial components having different structure sensitivities.