摘要:Recently, there is an increasing demand for functional yoghurts by consumer, especially those produced through the incorporation of food of plant origin or its bioactive components. The current research was devoted to formulating functional buffalo yoghurt through the addition of 0.1 and 0.2% of fenugreek (Trigonella foenum-graecum) seed flour (F1 and F2) and Moringa oleifera seed flour (M1 and M2). The effects of fortification were evaluated on physicochemical, total phenolic content (TPC), antioxidant activity (AOA), the viability of yoghurt starter, and sensory acceptability of yoghurts during cold storage. Moringa oleifera seed flour had higher contents of TPC (140.12 mg GAE/g) and AOA (31.30%) as compared to fenugreek seed flour (47.4 mg GAE/g and 19.1%, respectively). Values of TPC and AOA significantly increased in fortified yoghurts, and M2 treatment had the highest values of TPC (31.61, 27.29, and 25.69 mg GAE/g) and AOA (89.32, 83.5, and 80.35%) at 1, 7, and 14 days of storage, respectively. M2 showed significantly higher antibacterial activity against E. coli, S. aureus, L. monocytogenes, and Salmonella spp. and the zones of inhibition were 12.65, 13.14, 17.23 and 14.49 mm, respectively. On the other hand, control yoghurt showed the lowest antibacterial activity and the zones of inhibition were (4.12, 5.21, 8.55, and 8.39 mm against E. coli, S. aureus, L. monocytogenes, and Salmonella spp., respectively). Incorporation of 0.1% and 0.2% of moringa seed flour (M1 and M2) led to a higher content of Ca, P, K, and Fe and lower content of Mg and Zn as compared to F1 and F2, respectively. Thus, it could be concluded that fenugreek and Moringa oleifera seed flour can be exploited in the preparation of functional novel yoghurt.
关键词:functional yogurt; fenugreek and Moringa oleifera seed flours; total phenolic content; antioxidant activity; antibacterial activity; mineral content functional yogurt ; fenugreek and Moringa oleifera seed flours ; total phenolic content ; antioxidant activity ; antibacterial activity ; mineral content