摘要:The technique of a larger volume of microparticle continuous separation in the acoustic field is proposed in this paper. This technique has got considerable potential with regard to the development of technologies for the portable, low-cost and non-biodegradable procedures of energy-efficient separation/purification of microparticles in biological suspension. Using a disk-shaped piezo transducer-bimorph (DSPTB) mounted on the bottom of a plastic conical fluid container (CFC), the acoustic waves (AWs) in the fluid and the eigenmodes of the CFC were excited. The AWs, induced by piezo transducer in the CFC, pushed the suspension with the microparticles upwards, which accumulated in the nodal zones of the resonating CFC walls by purifying the suspension that accumulates in the anti-nodal zones. The outlets distributed in the nodal and anti-nodal zones of the conical fluid container walls resonating on the fourth eigenmode allowed the collection of enriched or purified from microparticles suspension.
关键词:piezoelectric actuator; acoustic waves; numerical simulation; 3D experimental set-up; microparticles in biological suspension piezoelectric actuator ; acoustic waves ; numerical simulation ; 3D experimental set-up ; microparticles in biological suspension