首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Estimating Hourly Population Distribution Patterns at High Spatiotemporal Resolution in Urban Areas Using Geo-Tagged Tweets and Dasymetric Mapping
  • 本地全文:下载
  • 作者:Jaehee Park ; Hao Zhang ; Su Yeon Han
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2020
  • 卷号:177
  • 页码:1-16
  • DOI:10.4230/LIPIcs.GIScience.2021.I.10
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:This paper introduces a spatiotemporal analysis framework for estimating hourly changing population distribution patterns in urban areas using geo-tagged tweets (the messages containing users’ geospatial locations), land use data, and dasymetric maps. We collected geo-tagged social media (tweets) within the County of San Diego during one year (2015) by using Twitter’s Streaming Application Programming Interfaces (APIs). A semi-manual Twitter content verification procedure for data cleaning was applied first to separate tweets created by humans from non-human users (bots). The next step was to calculate the number of unique Twitter users every hour within census blocks. The final step was to estimate the actual population by transforming the numbers of unique Twitter users in each census block into estimated population densities with spatial and temporal factors using dasymetric maps. The temporal factor was estimated based on hourly changes of Twitter messages within San Diego County, CA. The spatial factor was estimated by using the dasymetric method with land use maps and 2010 census data. Comparing to census data, our methods can provide better estimated population in airports, shopping malls, sports stadiums, zoo and parks, and business areas during the day time.
  • 关键词:Population Estimation; Twitter; Social Media; Dasymetric Map; Spatiotemporal
国家哲学社会科学文献中心版权所有