首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Research on Application of Big Data in Local Government Debt Audit
  • 本地全文:下载
  • 作者:Xuefeng Li
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2020
  • 卷号:214
  • 页码:1-5
  • DOI:10.1051/e3sconf/202021401024
  • 出版社:EDP Sciences
  • 摘要:While big data provides massive information for auditing work, it also changes the specific requirements of audit procedures. The pressure of economic downward has increased the concealment of local government debt risks in China, hence the requirements for its audit have increased accordingly. This paper combines the method of investigation and theoretical analysis to study the status quo of local government debt. Based on big data, the audit procedure of local government debt is designed in order to provide a reference for actual government debt audit work.
国家哲学社会科学文献中心版权所有