首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Economic factors of electricity transport based on energy consumption forecasting
  • 本地全文:下载
  • 作者:Anna Grabar ; Darya Starkova ; Olga Soboleva
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2020
  • 卷号:210
  • 页码:1-9
  • DOI:10.1051/e3sconf/202021013036
  • 出版社:EDP Sciences
  • 摘要:Forecasting significance in the energy market is extremely high. Demand for electricity determines the key decisions on its purchase and production, load transfer and transmission control. Over the past few decades, several methods have been developed to accurately predict the future of energy consumption. This article discusses various methods for forecasting energy demand. Three blocks of methods are considered: statistical, methods using artificial intelligence and hybrid. Authors defined the metrics that show the quality of the models and help to compare the results of the models: mean absolute error (MAE), mean absolute percentage error (MAPE), root-mean-square deviation (RMSE), minimum and maximum errors on the test sample. A comparative analysis of forecasting methods has been lunched on the open data set. The best result is obtained using a combined model based on the Lasso regression method. The accuracy and speed of predictions helps to get an economic effect from regulating generation by selling electricity at the peak of consumption.
国家哲学社会科学文献中心版权所有