首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Model improvement and future projection of permafrost processes in a global land surface model
  • 本地全文:下载
  • 作者:Tokuta Yokohata ; Kazuyuki Saito ; Kumiko Takata
  • 期刊名称:Progress in Earth and Planetary Science
  • 电子版ISSN:2197-4284
  • 出版年度:2020
  • 卷号:7
  • 期号:1
  • 页码:1-12
  • DOI:10.1186/s40645-020-00380-w
  • 出版社:Springer Verlag
  • 摘要:To date, the treatment of permafrost in global climate models has been simplified due to the prevailing uncertainties in the processes involving frozen ground. In this study, we improved the modeling of permafrost processes in a state-of-the-art climate model by taking into account some of the relevant physical properties of soil such as changes in the thermophysical properties due to soil freezing. As a result, the improved version of the global land surface model was able to reproduce a more realistic permafrost distribution at the southern limit of the permafrost area by increasing the freezing of soil moisture in winter. The improved modeling of permafrost processes also had a significant effect on future projections. Using the conventional formulation, the predicted cumulative reduction of the permafrost area by year 2100 was approximately 60% (40–80% range of uncertainty from a multi-model ensemble) in the RCP8.5 scenario, while with the improved formulation, the reduction was approximately 35% (20–50%). Our results indicate that the improved treatment of permafrost processes in global climate models is important to ensuring more reliable future projections.
  • 其他摘要:Abstract

    To date, the treatment of permafrost in global climate models has been simplified due to the prevailing uncertainties in the processes involving frozen ground. In this study, we improved the modeling of permafrost processes in a state-of-the-art climate model by taking into account some of the relevant physical properties of soil such as changes in the thermophysical properties due to soil freezing. As a result, the improved version of the global land surface model was able to reproduce a more realistic permafrost distribution at the southern limit of the permafrost area by increasing the freezing of soil moisture in winter. The improved modeling of permafrost processes also had a significant effect on future projections. Using the conventional formulation, the predicted cumulative reduction of the permafrost area by year 2100 was approximately 60% (40–80% range of uncertainty from a multi-model ensemble) in the RCP8.5 scenario, while with the improved formulation, the reduction was approximately 35% (20–50%). Our results indicate that the improved treatment of permafrost processes in global climate models is important to ensuring more reliable future projections.

  • 关键词:Permafrost degradation;Global climate model;Climate change
国家哲学社会科学文献中心版权所有