摘要:Kalan is one of the focus areas for uranium exploration in West Borneo that conducted by BATAN. Situated in the central part of Kalan, previous works in Rabau Hulu Sector consisted of surface geology and radiometric anomaly mapping, trenching, drilling, logging, and conventional uranium resource estimation. Nevertheless, the complete resource estimation of the previous work was still using 2D modeling, and the latest one using 3D modeling is a method-application case study in one orebody. To increase the confidence level and completing the uranium resource estimation of all orebodies in this sector, a geostatistical estimation with 3D orebody modeling using SURPAC mine planning software was conducted in this paper. Gamma-ray log data from 32 drill holes were collected and then interpreted to obtain uranium grade-thickness data. Based on the correlation of grade-thickness data according to surface orebody orientation, the orebody 3D modeling was done. It resulted in 26 orebodies with one control system of lithology as the mineralization only taken place in the quartzite unit. This 3D model then used as a constraint for block model with 4x4x2 m block size and 0.25x0.25x0.125 m minimum block size. Block model calculation was performed using ordinary kriging which generated the kriging efficiency attribute for the determination of the resource category. Within 25 meters searching radius, the calculation resulted in 408, 480 tons of ore, while total uranium resource was 268 tons of uranium with 677 ppm average grade. There were 214 tons of uranium (79%) categorized as measured while the other 54 tons of uranium (21%) categorized as indicated.