首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Methane Emissions in a Chemistry‐Climate Model: Feedbacks and Climate Response
  • 本地全文:下载
  • 作者:I. Heimann ; P. T. Griffiths ; N. J. Warwick
  • 期刊名称:Journal of Advances in Modeling Earth Systems
  • 电子版ISSN:1942-2466
  • 出版年度:2020
  • 卷号:12
  • 期号:10
  • 页码:1-19
  • DOI:10.1029/2019MS002019
  • 出版社:John Wiley & Sons, Ltd.
  • 摘要:Understanding the past, present, and future evolution of methane remains a grand challenge. Here we have used a hierarchy of models, ranging from simple box models to a chemistry‐climate model (CCM), UM‐UKCA, to assess the contemporary and possible future atmospheric methane burden. We assess two emission data sets for the year 2000 deployed in UM‐UKCA against key observational constraints. We explore the impact of the treatment of model boundary conditions for methane and show that, depending on other factors, such as CO emissions, satisfactory agreement may be obtained with either of the CH4 emission data sets, highlighting the difficulty in unambiguous choice of model emissions in a coupled chemistry model with strong feedbacks. The feedbacks in the CH4‐CO‐OH system, and their uncertainties, play a critical role in the projection of possible futures. In a future driven by large increases in greenhouse gas forcing, increases in tropospheric temperature drive, an increase in water vapor, and, hence, [OH]. In the absence of methane emission changes this leads to a significant decrease in methane compared to the year 2000. However, adding a projected increase in methane emissions from the RCP8.5 scenario leads to a large increase in methane abundance. This is modified by changes to CO and NOx emissions. Clearly, future levels of methane are uncertain and depend critically on climate change and on the future emission pathways of methane and ozone precursors. We highlight that further work is needed to understand the coupled CH4‐CO‐OH system in order to understand better future methane evolution.
国家哲学社会科学文献中心版权所有