首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Convolutional neural network for maize leaf disease image classification
  • 本地全文:下载
  • 作者:Mohammad Syarief ; Wahyudi Setiawan
  • 期刊名称:TELKOMNIKA (Telecommunication Computing Electronics and Control)
  • 印刷版ISSN:2302-9293
  • 出版年度:2020
  • 卷号:18
  • 期号:3
  • 页码:1376-1381
  • DOI:10.12928/telkomnika.v18i3.14840
  • 出版社:Universitas Ahmad Dahlan
  • 摘要:This article discusses the maize leaf disease image classification. The experimental images consist of 200 images with 4 classes: healthy, cercospora, common rust and northern leaf blight. There are 2 steps: feature extraction and classification. Feature extraction obtains features automatically using convolutional neural network (CNN). Seven CNN models were tested i.e AlexNet, virtual geometry group (VGG) 16, VGG19, GoogleNet, Inception-V3, residual network 50 (ResNet50) and ResNet101. While the classification using machine learning methods include k-Nearest neighbor, decision tree and support vector machine. Based on the testing results, the best classification was AlexNet and support vector machine with accuracy, sensitivity, specificity of 93.5%, 95.08%, and 93%, respectively.
  • 关键词:alexnet; classification; convolutional neural network; k-nearest neighbor; maize leaf image;
国家哲学社会科学文献中心版权所有