期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
印刷版ISSN:2158-107X
电子版ISSN:2156-5570
出版年度:2020
卷号:11
期号:1
DOI:10.14569/IJACSA.2020.0110171
出版社:Science and Information Society (SAI)
摘要:The research aim is to determine the effect of word-stemming in web pages classification using different machine learning classifiers, namely Naïve Bayes (NB), k-Nearest Neighbour (k-NN), Support Vector Machine (SVM) and Multilayer Perceptron (MP). Each classifiers' performance is evaluated in term of accuracy and processing time. This research uses BBC dataset that has five predefined categories. The result demonstrates that classifiers' performance is better without word stemming, whereby all classifiers show higher classification accuracy, with the highest accuracy produced by NB and SVM at 97% for F1 score, while NB takes shorter training time than SVM. With word stemming, the effect on training and classification time is negligible, except on Multilayer Perceptron in which word stemming has effectively reduced the training time.