首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Stemming Text-based Web Page Classification using Machine Learning Algorithms: A Comparison
  • 本地全文:下载
  • 作者:Ansari Razali ; Salwani Mohd Daud ; Nor Azan Mat Zin
  • 期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
  • 印刷版ISSN:2158-107X
  • 电子版ISSN:2156-5570
  • 出版年度:2020
  • 卷号:11
  • 期号:1
  • DOI:10.14569/IJACSA.2020.0110171
  • 出版社:Science and Information Society (SAI)
  • 摘要:The research aim is to determine the effect of word-stemming in web pages classification using different machine learning classifiers, namely Naïve Bayes (NB), k-Nearest Neighbour (k-NN), Support Vector Machine (SVM) and Multilayer Perceptron (MP). Each classifiers' performance is evaluated in term of accuracy and processing time. This research uses BBC dataset that has five predefined categories. The result demonstrates that classifiers' performance is better without word stemming, whereby all classifiers show higher classification accuracy, with the highest accuracy produced by NB and SVM at 97% for F1 score, while NB takes shorter training time than SVM. With word stemming, the effect on training and classification time is negligible, except on Multilayer Perceptron in which word stemming has effectively reduced the training time.
  • 关键词:Web page classification; stemming; machine learning; Naïve Bayes; k-NN; SVM; multilayer perceptron
国家哲学社会科学文献中心版权所有