首页    期刊浏览 2024年12月12日 星期四
登录注册

文章基本信息

  • 标题:Predicting Book Sales Trend using Deep Learning Framework
  • 本地全文:下载
  • 作者:Tan Qin Feng ; Murphy Choy ; Ma Nang Laik
  • 期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
  • 印刷版ISSN:2158-107X
  • 电子版ISSN:2156-5570
  • 出版年度:2020
  • 卷号:11
  • 期号:2
  • DOI:10.14569/IJACSA.2020.0110205
  • 出版社:Science and Information Society (SAI)
  • 摘要:A deep learning framework like Generative Adversarial Network (GAN) has gained popularity in recent years for handling many different computer visions related problems. In this research, instead of focusing on generating the near-real images using GAN, the aim is to develop a comprehensive GAN framework for book sales ranks prediction, based on the historical sales rankings and different attributes collected from the Amazon site. Different analysis stages have been conducted in the research. In this research, a comprehensive data preprocessing is required before the modeling and evaluation. Extensive predevelopment on the data, related features selections for predicting the sales rankings, and several data transformation techniques are being applied before generating the models. Later then various models are being trained and evaluated on prediction results. In the GAN architecture, the generator network that used to generate the features is being built, and the discriminator network that used to differentiate between real and fake features is being trained before the predictions. Lastly, the regression GAN model prediction results are compared against the different neural network models like multilayer perceptron, deep belief network, convolution neural network.
  • 关键词:Generative adversarial network; deep learning framework; book sales forecasting; regression
国家哲学社会科学文献中心版权所有