首页    期刊浏览 2024年12月13日 星期五
登录注册

文章基本信息

  • 标题:Prediction of Defect Prone Software Modules using MLP based Ensemble Techniques
  • 本地全文:下载
  • 作者:Ahmed Iqbal ; Shabib Aftab
  • 期刊名称:International Journal of Information Technology and Computer Science
  • 印刷版ISSN:2074-9007
  • 电子版ISSN:2074-9015
  • 出版年度:2020
  • 卷号:12
  • 期号:3
  • 页码:26-31
  • DOI:10.5815/ijitcs.2020.03.04
  • 出版社:MECS Publisher
  • 摘要:Prediction of defect prone software modules is now considered as an important activity of software quality assurance. This approach uses the software metrics to predict whether the developed module is defective or not. This research presents MLP based ensemble classification framework to predict the defect prone software modules. The framework predicts the defective modules by using three dimensions: 1) Tuned MLP, 2) Tuned MLP with Bagging 3) Tuned MLP with Boosting. In first dimension only the MLP is used for the classification after optimization. In second dimension, the optimized MLP is integrated with bagging technique. In third dimension, the optimized MLP is integrated with boosting technique. Four publically available cleaned NASA MDP datasets are used for the implementation of proposed framework and the performance is evaluated by using F-measure, Accuracy, Roc Area and MCC. The performance of the proposed framework is compared with ten widely used supervised classification techniques by using Scott-Knott ESD test and the results reflects the high performance of the proposed framework.
  • 关键词:Software Defect Prediction;MLP;Ensemble Classification techniques;Software Metrics
国家哲学社会科学文献中心版权所有