首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Cortical network responses map onto data-driven features that capture visual semantics of movie fragments
  • 本地全文:下载
  • 作者:Julia Berezutskaya ; Zachary V. Freudenburg ; Luca Ambrogioni
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • DOI:10.1038/s41598-020-68853-y
  • 出版社:Springer Nature
  • 摘要:Research on how the human brain extracts meaning from sensory input relies in principle on methodological reductionism. In the present study, we adopt a more holistic approach by modeling the cortical responses to semantic information that was extracted from the visual stream of a feature film, employing artificial neural network models. Advances in both computer vision and natural language processing were utilized to extract the semantic representations from the film by combining perceptual and linguistic information. We tested whether these representations were useful in studying the human brain data. To this end, we collected electrocorticography responses to a short movie from 37 subjects and fitted their cortical patterns across multiple regions using the semantic components extracted from film frames. We found that individual semantic components reflected fundamental semantic distinctions in the visual input, such as presence or absence of people, human movement, landscape scenes, human faces, etc. Moreover, each semantic component mapped onto a distinct functional cortical network involving high-level cognitive regions in occipitotemporal, frontal and parietal cortices. The present work demonstrates the potential of the data-driven methods from information processing fields to explain patterns of cortical responses, and contributes to the overall discussion about the encoding of high-level perceptual information in the human brain.
国家哲学社会科学文献中心版权所有