摘要:Kernel water content (KWC) and kernel dehydration rate (KDR) are two main factors affecting maize seed quality and have a decisive influence on the mechanical harvest. It is of great importance to map and mine candidate genes related to KWCs and KDRs before physiological maturity in maize. 120 double-haploid (DH) lines constructed from Si287 with low KWC and JiA512 with high KWC were used as the mapping population. KWCs were measured every 5 days from 10 to 40 days after pollination, and KDRs were calculated. A total of 1702 SNP markers were used to construct a linkage map, with a total length of 1,309.02 cM and an average map distance of 0.77 cM. 10 quantitative trait loci (QTLs) and 27 quantitative trait nucleotides (QTNs) were detected by genome-wide composite interval mapping (GCIM) and multi-locus random-SNP-effect mixed linear model (mrMLM), respectively. One and two QTL hotspot regions were found on Chromosome 3 and 7, respectively. Analysis of the Gene Ontology showed that 2 GO terms of biological processes (BP) were significantly enriched (P ≤ 0.05) and 6 candidate genes were obtained. This study provides theoretical support for marker-assisted breeding of mechanical harvest variety in maize.