首页    期刊浏览 2025年01月09日 星期四
登录注册

文章基本信息

  • 标题:Assessing invasiveness of subsolid lung adenocarcinomas with combined attenuation and geometric feature models
  • 本地全文:下载
  • 作者:Constance de Margerie-Mellon ; Ritu R. Gill ; Pascal Salazar
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • DOI:10.1038/s41598-020-70316-3
  • 出版社:Springer Nature
  • 摘要:The aim of this study was to develop and test multiclass predictive models for assessing the invasiveness of individual lung adenocarcinomas presenting as subsolid nodules on computed tomography (CT). 227 lung adenocarcinomas were included: 31 atypical adenomatous hyperplasia and adenocarcinomas in situ (class H1), 64 minimally invasive adenocarcinomas (class H2) and 132 invasive adenocarcinomas (class H3). Nodules were segmented, and geometric and CT attenuation features including functional principal component analysis features (FPC1 and FPC2) were extracted. After a feature selection step, two predictive models were built with ordinal regression: Model 1 based on volume (log) (logarithm of the nodule volume) and FPC1, and Model 2 based on volume (log) and Q.875 (CT attenuation value at the 87.5% percentile). Using the 200-repeats Monte-Carlo cross-validation method, these models provided a multiclass classification of invasiveness with discriminative power AUCs of 0.83 to 0.87 and predicted the class probabilities with less than a 10% average error. The predictive modelling approach adopted in this paper provides a detailed insight on how the value of the main predictors contribute to the probability of nodule invasiveness and underlines the role of nodule CT attenuation features in the nodule invasiveness classification.
国家哲学社会科学文献中心版权所有