首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:A mask R-CNN model for reidentifying extratropical cyclones based on quasi-supervised thought
  • 本地全文:下载
  • 作者:Chuhan Lu ; Yang Kong ; Zhaoyong Guan
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • DOI:10.1038/s41598-020-71831-z
  • 出版社:Springer Nature
  • 摘要:The applications of machine learning/deep learning (ML/DL) methods in meteorology have developed considerably in recent years. Massive amounts of meteorological data are conducive to improving the training effect and model performance of ML/DL, but the establishment of training datasets is often time consuming, especially in the context of supervised learning. In this paper, to identify the two-dimensional (2D) structures of extratropical cyclones in the Northern Hemisphere, a quasi-supervised reidentification method for extratropical cyclones is proposed. This method first uses a traditional automatic cyclone identification method to construct a trainable labeled dataset and then reidentifies extratropical cyclones in a quasi-supervised fashion by using a (pre-trained) Mask region-based convolutional neural network (Mask R-CNN) model. In comparison, the new method increases the number of identified cyclones by 8.29%, effectively supplementing the traditional method. The newly recognized cyclones are mainly shallow or moderately deep subsynoptic-scale cyclones. However, a considerable portion of the new cyclones along the coastlines of the oceans are accompanied by strong winds. In addition, the Mask R-CNN model also shows good performance in identifying the horizontal structures of tropical cyclones. The quasi-supervised concept proposed in this paper may shed some light on accurate target identification in other research fields.
国家哲学社会科学文献中心版权所有