首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:How Fast Can You Escape a Compact Polytope?
  • 本地全文:下载
  • 作者:Julian D'Costa ; Engel Lefaucheux ; Jo{"e}l Ouaknine
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2020
  • 卷号:154
  • 页码:49:1-49:11
  • DOI:10.4230/LIPIcs.STACS.2020.49
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:The Continuous Polytope Escape Problem (CPEP) asks whether every trajectory of a linear differential equation initialised within a convex polytope eventually escapes the polytope. We provide a polynomial-time algorithm to decide CPEP for compact polytopes. We also establish a quantitative uniform upper bound on the time required for every trajectory to escape the given polytope. In addition, we establish iteration bounds for termination of discrete linear loops via reduction to the continuous case.
  • 关键词:Continuous linear dynamical systems; termination
国家哲学社会科学文献中心版权所有