首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Information Distance Revisited
  • 本地全文:下载
  • 作者:Bruno Bauwens
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2020
  • 卷号:154
  • 页码:46:1-46:14
  • DOI:10.4230/LIPIcs.STACS.2020.46
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We consider the notion of information distance between two objects x and y introduced by Bennett, Gács, Li, Vitanyi, and Zurek [C. H. Bennett et al., 1998] as the minimal length of a program that computes x from y as well as computing y from x, and study different versions of this notion. In the above paper, it was shown that the prefix version of information distance equals max (K(x y),K(y x)) up to additive logarithmic terms. It was claimed by Mahmud [Mahmud, 2009] that this equality holds up to additive O(1)-precision. We show that this claim is false, but does hold if the distance is at least logarithmic. This implies that the original definition provides a metric on strings that are at superlogarithmically separated.
  • 关键词:Kolmogorov complexity; algorithmic information distance
国家哲学社会科学文献中心版权所有