首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Non-Rectangular Convolutions and (Sub-)Cadences with Three Elements
  • 本地全文:下载
  • 作者:Mitsuru Funakoshi ; Julian Pape-Lange
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2020
  • 卷号:154
  • 页码:30:1-30:16
  • DOI:10.4230/LIPIcs.STACS.2020.30
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:The discrete acyclic convolution computes the 2n+1 sums â^'_{i+j=k (i,j)â^^[0,1,2,… ,n]²} a_i b_j in ð'ª(n log n) time. By using suitable offsets and setting some of the variables to zero, this method provides a tool to calculate all non-zero sums â^'_{i+j=k (i,j)â^^ Pâ^©â"¤Â²} a_i b_j in a rectangle P with perimeter p in ð'ª(p log p) time. This paper extends this geometric interpretation in order to allow arbitrary convex polygons P with k vertices and perimeter p. Also, this extended algorithm only needs ð'ª(k + p(log p)² log k) time. Additionally, this paper presents fast algorithms for counting sub-cadences and cadences with 3 elements using this extended method.
  • 关键词:discrete acyclic convolutions; string-cadences; geometric algorithms; number theoretic transforms
国家哲学社会科学文献中心版权所有