首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Containment of UC2RPQ: The Hard and Easy Cases
  • 本地全文:下载
  • 作者:Diego Figueira
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2020
  • 卷号:155
  • 页码:9:1-9:18
  • DOI:10.4230/LIPIcs.ICDT.2020.9
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We study the containment problem for UC2RPQ, that is, two-way Regular Path Queries, closed under conjunction, projection and union. We show a dichotomy property between PSpace-c and ExpSpace-c based on a property on the underlying graph of queries. We show that for any class C of graphs, the containment problem for queries whose underlying graph is in C is in PSpace if and only if C has bounded bridgewidth. Bridgewidth is a graph measure we introduce to this end, defined as the maximum size of a minimal edge separator of a graph.
  • 关键词:Regular Path Queries (RPQ); 2RPQ; CRPQ; C2RPQ; UC2RPQ; graph databases; containment; inclusion; equivalence; dichotomy; graph measure; bridge-width (bridgewidth); minimal edge separator; minimal cut-set; max-cut; tree-width (treewidth)
国家哲学社会科学文献中心版权所有