首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:A Near-Linear Time Approximation Scheme for Geometric Transportation with Arbitrary Supplies and Spread
  • 本地全文:下载
  • 作者:Kyle Fox ; Jiashuai Lu
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2020
  • 卷号:164
  • 页码:45:1-45:18
  • DOI:10.4230/LIPIcs.SoCG.2020.45
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:The geometric transportation problem takes as input a set of points P in d-dimensional Euclidean space and a supply function μ : P â†' â". The goal is to find a transportation map, a non-negative assignment Ï" : P Ã- P â†' â"_{≥ 0} to pairs of points, so the total assignment leaving each point is equal to its supply, i.e., â^'_{r â^^ P} Ï"(q, r) - â^'_{p â^^ P} Ï"(p, q) = μ(q) for all points q â^^ P. The goal is to minimize the weighted sum of Euclidean distances for the pairs, â^'_{(p, q) â^^ P Ã- P} Ï"(p, q) â<. q - p â,,. We describe the first algorithm for this problem that returns, with high probability, a (1 + ε)-approximation to the optimal transportation map in O(n poly(1 / ε) polylog n) time. In contrast to the previous best algorithms for this problem, our near-linear running time bound is independent of the spread of P and the magnitude of its real-valued supplies.
  • 关键词:Transportation map; earth mover’s distance; shape matching; approximation algorithms
国家哲学社会科学文献中心版权所有