首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Minimum Bounded Chains and Minimum Homologous Chains in Embedded Simplicial Complexes
  • 本地全文:下载
  • 作者:Glencora Borradaile ; William Maxwell ; Amir Nayyeri
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2020
  • 卷号:164
  • 页码:21:1-21:15
  • DOI:10.4230/LIPIcs.SoCG.2020.21
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We study two optimization problems on simplicial complexes with homology over â"¤â,,, the minimum bounded chain problem: given a d-dimensional complex ð'¦ embedded in â"^(d+1) and a null-homologous (d-1)-cycle C in ð'¦, find the minimum d-chain with boundary C, and the minimum homologous chain problem: given a (d+1)-manifold â"³ and a d-chain D in â"³, find the minimum d-chain homologous to D. We show strong hardness results for both problems even for small values of d; d = 2 for the former problem, and d=1 for the latter problem. We show that both problems are APX-hard, and hard to approximate within any constant factor assuming the unique games conjecture. On the positive side, we show that both problems are fixed-parameter tractable with respect to the size of the optimal solution. Moreover, we provide an O(â^S{log β_d})-approximation algorithm for the minimum bounded chain problem where β_d is the dth Betti number of ð'¦. Finally, we provide an O(â^S{log n_{d+1}})-approximation algorithm for the minimum homologous chain problem where n_{d+1} is the number of (d+1)-simplices in â"³.
  • 关键词:computational topology; algorithmic complexity; simplicial complexes
国家哲学社会科学文献中心版权所有