文章基本信息
- 标题:Holes and Islands in Random Point Sets
- 本地全文:下载
- 作者:Martin Balko ; Manfred Scheucher ; Pavel Valtr 等
- 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
- 电子版ISSN:1868-8969
- 出版年度:2020
- 卷号:164
- 页码:14:1-14:16
- DOI:10.4230/LIPIcs.SoCG.2020.14
- 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
- 摘要:For d â^^ â"., let S be a finite set of points in â"^d in general position. A set H of k points from S is a k-hole in S if all points from H lie on the boundary of the convex hull conv(H) of H and the interior of conv(H) does not contain any point from S. A set I of k points from S is a k-island in S if conv(I) â^© S = I. Note that each k-hole in S is a k-island in S. For fixed positive integers d, k and a convex body K in â"^d with d-dimensional Lebesgue measure 1, let S be a set of n points chosen uniformly and independently at random from K. We show that the expected number of k-islands in S is in O(n^d). In the case k=d+1, we prove that the expected number of empty simplices (that is, (d+1)-holes) in S is at most 2^(d-1) â<. d! â<. binom(n,d). Our results improve and generalize previous bounds by Bárány and Füredi [I. Bárány and Z. Füredi, 1987], Valtr [P. Valtr, 1995], Fabila-Monroy and Huemer [Fabila-Monroy and Huemer, 2012], and Fabila-Monroy, Huemer, and Mitsche [Fabila-Monroy et al., 2015].
- 关键词:stochastic geometry; random point set; ErdÅ's-Szekeres type problem; k-hole; k-island; empty polytope; convex position; Horton set