首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Euclidean TSP in Narrow Strips
  • 本地全文:下载
  • 作者:Henk Alkema ; Mark de Berg ; S{'a}ndor Kisfaludi-Bak
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2020
  • 卷号:164
  • 页码:4:1-4:16
  • DOI:10.4230/LIPIcs.SoCG.2020.4
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We investigate how the complexity of {Euclidean TSP} for point sets P inside the strip (-â^Z,+â^Z)Ã-[0,δ] depends on the strip width δ. We obtain two main results. - For the case where the points have distinct integer x-coordinates, we prove that a shortest bitonic tour (which can be computed in O(n log²n) time using an existing algorithm) is guaranteed to be a shortest tour overall when δ ⩽ 2â^S2, a bound which is best possible. - We present an algorithm that is fixed-parameter tractable with respect to δ. More precisely, our algorithm has running time 2^{O(â^Sδ)} n² for sparse point sets, where each 1Ã-δ rectangle inside the strip contains O(1) points. For random point sets, where the points are chosen uniformly at random from the rectangle [0,n]Ã- [0,δ], it has an expected running time of 2^{O(â^Sδ)} n² + O(n³).
  • 关键词:Computational geometry; Euclidean TSP; bitonic TSP; fixed-parameter tractable algorithms
国家哲学社会科学文献中心版权所有