首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:The Iteration Number of Colour Refinement
  • 本地全文:下载
  • 作者:Sandra Kiefer ; Brendan D. McKay
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2020
  • 卷号:168
  • 页码:73:1-73:19
  • DOI:10.4230/LIPIcs.ICALP.2020.73
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:The Colour Refinement procedure and its generalisation to higher dimensions, the Weisfeiler-Leman algorithm, are central subroutines in approaches to the graph isomorphism problem. In an iterative fashion, Colour Refinement computes a colouring of the vertices of its input graph. A trivial upper bound on the iteration number of Colour Refinement on graphs of order n is n-1. We show that this bound is tight. More precisely, we prove via explicit constructions that there are infinitely many graphs G on which Colour Refinement takes G -1 iterations to stabilise. Modifying the infinite families that we present, we show that for every natural number n ≥ 10, there are graphs on n vertices on which Colour Refinement requires at least n-2 iterations to reach stabilisation.
  • 关键词:Colour Refinement; iteration number; Weisfeiler-Leman algorithm; quantifier depth
国家哲学社会科学文献中心版权所有