首页    期刊浏览 2025年01月06日 星期一
登录注册

文章基本信息

  • 标题:Linearly Representable Submodular Functions: An Algebraic Algorithm for Minimization
  • 本地全文:下载
  • 作者:Rohit Gurjar ; Rajat Rathi
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2020
  • 卷号:168
  • 页码:61:1-61:15
  • DOI:10.4230/LIPIcs.ICALP.2020.61
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:A set function f : 2^E â†' â" on the subsets of a set E is called submodular if it satisfies a natural diminishing returns property: for any S âS† E and x,y â^‰ S, we have f(S â^ª {x,y}) - f(S â^ª {y}) ≤ f(S â^ª {x}) - f(S). Submodular minimization problem asks for finding the minimum value a given submodular function takes. We give an algebraic algorithm for this problem for a special class of submodular functions that are "linearly representable". It is known that every submodular function f can be decomposed into a sum of two monotone submodular functions, i.e., there exist two non-decreasing submodular functions fâ,,fâ,, such that f(S) = fâ,(S) + fâ,,(E ⧵ S) for each S âS† E. Our class consists of those submodular functions f, for which each of fâ, and fâ,, is a sum of k rank functions on families of subspaces of ð"½â¿, for some field ð"½. Our algebraic algorithm for this class of functions can be parallelized, and thus, puts the problem of finding the minimizing set in the complexity class randomized NC. Further, we derandomize our algorithm so that it needs only O(log²(kn E )) many random bits. We also give reductions from two combinatorial optimization problems to linearly representable submodular minimization, and thus, get such parallel algorithms for these problems. These problems are (i) covering a directed graph by k a-arborescences and (ii) packing k branchings with given root sets in a directed graph.
  • 关键词:Submodular Minimization; Parallel Algorithms; Derandomization; Algebraic Algorithms
国家哲学社会科学文献中心版权所有