首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Computation of Hadwiger Number and Related Contraction Problems: Tight Lower Bounds
  • 本地全文:下载
  • 作者:Fedor V. Fomin ; Daniel Lokshtanov ; Ivan Mihajlin
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2020
  • 卷号:168
  • 页码:49:1-49:18
  • DOI:10.4230/LIPIcs.ICALP.2020.49
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We prove that the Hadwiger number of an n-vertex graph G (the maximum size of a clique minor in G) cannot be computed in time n^o(n), unless the Exponential Time Hypothesis (ETH) fails. This resolves a well-known open question in the area of exact exponential algorithms. The technique developed for resolving the Hadwiger number problem has a wider applicability. We use it to rule out the existence of n^o(n)-time algorithms (up to ETH) for a large class of computational problems concerning edge contractions in graphs.
  • 关键词:Hadwiger Number; Exponential-Time Hypothesis; Exact Algorithms; Edge Contraction Problems
国家哲学社会科学文献中心版权所有