首页    期刊浏览 2024年12月13日 星期五
登录注册

文章基本信息

  • 标题:Counting Homomorphisms in Plain Exponential Time
  • 本地全文:下载
  • 作者:Andrei A. Bulatov ; Amineh Dadsetan
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2020
  • 卷号:168
  • 页码:21:1-21:18
  • DOI:10.4230/LIPIcs.ICALP.2020.21
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:In the counting Graph Homomorphism problem (#GraphHom) the question is: Given graphs G,H, find the number of homomorphisms from G to H. This problem is generally #P-complete, moreover, Cygan et al. proved that unless the Exponential Time Hypothesis fails there is no algorithm that solves this problem in time O( V(H) ^o( V(G) )). This, however, does not rule out the possibility that faster algorithms exist for restricted problems of this kind. Wahlström proved that #GraphHom can be solved in plain exponential time, that is, in time O((2k+1)^( V(G) + V(H) ) poly( V(H) , V(G) )) provided H has clique width k. We generalize this result to a larger class of graphs, and also identify several other graph classes that admit a plain exponential algorithm for #GraphHom.
  • 关键词:graph homomorphisms; plain exponential time; clique width
国家哲学社会科学文献中心版权所有