首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:How to Play in Infinite MDPs (Invited Talk)
  • 本地全文:下载
  • 作者:Stefan Kiefer ; Richard Mayr ; Mahsa Shirmohammadi
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2020
  • 卷号:168
  • 页码:3:1-3:18
  • DOI:10.4230/LIPIcs.ICALP.2020.3
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Markov decision processes (MDPs) are a standard model for dynamic systems that exhibit both stochastic and nondeterministic behavior. For MDPs with finite state space it is known that for a wide range of objectives there exist optimal strategies that are memoryless and deterministic. In contrast, if the state space is infinite, optimal strategies may not exist, and optimal or ε-optimal strategies may require (possibly infinite) memory. In this paper we consider qualitative objectives: reachability, safety, (co-)Büchi, and other parity objectives. We aim at giving an introduction to a collection of techniques that allow for the construction of strategies with little or no memory in countably infinite MDPs.
  • 关键词:Markov decision processes
国家哲学社会科学文献中心版权所有