首页    期刊浏览 2025年01月08日 星期三
登录注册

文章基本信息

  • 标题:Search Problems in Algebraic Complexity, GCT, and Hardness of Generators for Invariant Rings
  • 本地全文:下载
  • 作者:Ankit Garg ; Christian Ikenmeyer ; Visu Makam
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2020
  • 卷号:169
  • 页码:12:1-12:17
  • DOI:10.4230/LIPIcs.CCC.2020.12
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We consider the problem of computing succinct encodings of lists of generators for invariant rings for group actions. Mulmuley conjectured that there are always polynomial sized such encodings for invariant rings of SL_n(â",)-representations. We provide simple examples that disprove this conjecture (under standard complexity assumptions). We develop a general framework, denoted algebraic circuit search problems, that captures many important problems in algebraic complexity and computational invariant theory. This framework encompasses various proof systems in proof complexity and some of the central problems in invariant theory as exposed by the Geometric Complexity Theory (GCT) program, including the aforementioned problem of computing succinct encodings for generators for invariant rings.
  • 关键词:generators for invariant rings; succinct encodings
国家哲学社会科学文献中心版权所有