首页    期刊浏览 2024年12月11日 星期三
登录注册

文章基本信息

  • 标题:A Quadratic Lower Bound for Algebraic Branching Programs
  • 本地全文:下载
  • 作者:Prerona Chatterjee ; Mrinal Kumar ; Adrian She
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2020
  • 卷号:169
  • 页码:2:1-2:21
  • DOI:10.4230/LIPIcs.CCC.2020.2
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We show that any Algebraic Branching Program (ABP) computing the polynomial â^'_{i=1}^n xⁿ_i has at least Ω(n²) vertices. This improves upon the lower bound of Ω(nlog n), which follows from the classical result of Baur and Strassen [Volker Strassen, 1973; Walter Baur and Volker Strassen, 1983], and extends the results of Kumar [Mrinal Kumar, 2019], which showed a quadratic lower bound for homogeneous ABPs computing the same polynomial. Our proof relies on a notion of depth reduction which is reminiscent of similar statements in the context of matrix rigidity, and shows that any small enough ABP computing the polynomial â^'_{i=1}^n xⁿ_i can be depth reduced to essentially a homogeneous ABP of the same size which computes the polynomial â^'_{i=1}^n xⁿ_i + ε(𝐱), for a structured "error polynomial" ε(𝐱). To complete the proof, we then observe that the lower bound in [Mrinal Kumar, 2019] is robust enough and continues to hold for all polynomials â^'_{i=1}^n xⁿ_i + ε(𝐱), where ε(𝐱) has the appropriate structure.
  • 关键词:Algebraic Branching Programs; Lower Bound
国家哲学社会科学文献中心版权所有