首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Approximate Turing Kernelization for Problems Parameterized by Treewidth
  • 本地全文:下载
  • 作者:Eva-Maria C. Hols ; Stefan Kratsch ; Astrid Pieterse
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2020
  • 卷号:173
  • 页码:60:1-60:23
  • DOI:10.4230/LIPIcs.ESA.2020.60
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We extend the notion of lossy kernelization, introduced by Lokshtanov et al. [STOC 2017], to approximate Turing kernelization. An α-approximate Turing kernel for a parameterized optimization problem is a polynomial-time algorithm that, when given access to an oracle that outputs c-approximate solutions in ð'ª(1) time, obtains an α â<. c-approximate solution to the considered problem, using calls to the oracle of size at most f(k) for some function f that only depends on the parameter. Using this definition, we show that Independent Set parameterized by treewidth ð" has a (1+ε)-approximate Turing kernel with ð'ª(ð"Â²/ε) vertices, answering an open question posed by Lokshtanov et al. [STOC 2017]. Furthermore, we give (1+ε)-approximate Turing kernels for the following graph problems parameterized by treewidth: Vertex Cover, Edge Clique Cover, Edge-Disjoint Triangle Packing and Connected Vertex Cover. We generalize the result for Independent Set and Vertex Cover, by showing that all graph problems that we will call friendly admit (1+ε)-approximate Turing kernels of polynomial size when parameterized by treewidth. We use this to obtain approximate Turing kernels for Vertex-Disjoint H-packing for connected graphs H, Clique Cover, Feedback Vertex Set and Edge Dominating Set.
  • 关键词:Approximation; Turing kernelization; Graph problems; Treewidth
国家哲学社会科学文献中心版权所有