首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:On the Complexity of Recovering Incidence Matrices
  • 本地全文:下载
  • 作者:Fedor V. Fomin ; Petr Golovach ; Pranabendu Misra
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2020
  • 卷号:173
  • 页码:50:1-50:13
  • DOI:10.4230/LIPIcs.ESA.2020.50
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:The incidence matrix of a graph is a fundamental object naturally appearing in many applications, involving graphs such as social networks, communication networks, or transportation networks. Often, the data collected about the incidence relations can have some slight noise. In this paper, we initiate the study of the computational complexity of recovering incidence matrices of graphs from a binary matrix: given a binary matrix M which can be written as the superposition of two binary matrices L and S, where S is the incidence matrix of a graph from a specified graph class, and L is a matrix (i) of small rank or, (ii) of small (Hamming) weight. Further, identify all those graphs whose incidence matrices form part of such a superposition. Here, L represents the noise in the input matrix M. Another motivation for this problem comes from the Matroid Minors project of Geelen, Gerards and Whittle, where perturbed graphic and co-graphic matroids play a prominent role. There, it is expected that a perturbed binary matroid (or its dual) is presented as L+S where L is a low rank matrix and S is the incidence matrix of a graph. Here, we address the complexity of constructing such a decomposition. When L is of small rank, we show that the problem is NP-complete, but it can be decided in time (mn)^O(r), where m,n are dimensions of M and r is an upper-bound on the rank of L. When L is of small weight, then the problem is solvable in polynomial time (mn)^O(1). Furthermore, in many applications it is desirable to have the list of all possible solutions for further analysis. We show that our algorithms naturally extend to enumeration algorithms for the above two problems with delay (mn)^O(r) and (mn)^O(1), respectively, between consecutive outputs.
  • 关键词:Graph Incidence Matrix; Matrix Recovery; Enumeration Algorithm
国家哲学社会科学文献中心版权所有