首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:A (1-e^{-1}-ε)-Approximation for the Monotone Submodular Multiple Knapsack Problem
  • 本地全文:下载
  • 作者:Yaron Fairstein ; Ariel Kulik ; Joseph
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2020
  • 卷号:173
  • 页码:44:1-44:19
  • DOI:10.4230/LIPIcs.ESA.2020.44
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We study the problem of maximizing a monotone submodular function subject to a Multiple Knapsack constraint (SMKP). The input is a set I of items, each associated with a non-negative weight, and a set of bins having arbitrary capacities. Also, we are given a submodular, monotone and non-negative function f over subsets of the items. The objective is to find a subset of items A âS† I and a packing of these items in the bins, such that f(A) is maximized. SMKP is a natural extension of both Multiple Knapsack and the problem of monotone submodular maximization subject to a knapsack constraint. Our main result is a nearly optimal polynomial time (1-e^{-1}-ε)-approximation algorithm for the problem, for any ε > 0. Our algorithm relies on a refined analysis of techniques for constrained submodular optimization combined with sophisticated application of tools used in the development of approximation schemes for packing problems.
  • 关键词:Sumodular Optimization; Multiple Knapsack; Randomized Rounding
国家哲学社会科学文献中心版权所有