首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Existence and multiplicity of solutions for Schrödinger–Kirchhoff type problems involving the fractional p ( ⋅ ) $p(\cdot )$ -Laplacian in R N $\mathbb{R}^{N}$
  • 本地全文:下载
  • 作者:In Hyoun Kim ; Yun-Ho Kim ; Kisoeb Park
  • 期刊名称:Boundary Value Problems
  • 印刷版ISSN:1687-2762
  • 电子版ISSN:1687-2770
  • 出版年度:2020
  • 卷号:2020
  • 期号:1
  • 页码:1
  • DOI:10.1186/s13661-020-01419-z
  • 出版社:Hindawi Publishing Corporation
  • 摘要:We are concerned with the following elliptic equations with variable exponents: $$ M \bigl([u]_{s,p(\cdot,\cdot)} \bigr)\mathcal{L}u(x) +\mathcal {V}(x) \vert u \vert ^{p(x)-2}u =\lambda\rho(x) \vert u \vert ^{r(x)-2}u + h(x,u) \quad \text{in } \mathbb {R}^{N}, $$ where $[u]_{s,p(\cdot,\cdot)}:=\int_{\mathbb {R}^{N}}\int_{\mathbb {R}^{N}} \frac{ u(x)-u(y) ^{p(x,y)}}{p(x,y) x-y ^{N+sp(x,y)}} \,dx \,dy$ , the operator $\mathcal{L}$ is the fractional $p(\cdot)$ -Laplacian, $p, r: {\mathbb {R}^{N}} \to(1,\infty)$ are continuous functions, $M \in C(\mathbb {R}^{+})$ is a Kirchhoff-type function, the potential function $\mathcal {V}:\mathbb {R}^{N} \to(0,\infty)$ is continuous, and $h:\mathbb {R}^{N}\times\mathbb {R} \to\mathbb {R}$ satisfies a Carathéodory condition. Under suitable assumptions on h, the purpose of this paper is to show the existence of at least two non-trivial distinct solutions for the problem above for the case of a combined effect of concave–convex nonlinearities. To do this, we use the mountain pass theorem and variant of the Ekeland variational principle as the main tools.
  • 关键词:35B33 ; 35D30 ; 35J20 ; 35J60 ; 35J66
国家哲学社会科学文献中心版权所有