首页    期刊浏览 2024年12月12日 星期四
登录注册

文章基本信息

  • 标题:A sharp oscillation criterion for a difference equation with constant delay
  • 本地全文:下载
  • 作者:Vasileios Benekas ; Ardak Kashkynbayev ; Ioannis P. Stavroulakis
  • 期刊名称:Advances in Difference Equations
  • 印刷版ISSN:1687-1839
  • 电子版ISSN:1687-1847
  • 出版年度:2020
  • 卷号:2020
  • 期号:1
  • 页码:1
  • DOI:10.1186/s13662-020-03016-x
  • 出版社:Hindawi Publishing Corporation
  • 摘要:It is known that all solutions of the difference equation $$\Delta x(n)+p(n)x(n-k)=0, \quad n\geq0, $$ where $\{p(n)\}_{n=0}^{\infty}$ is a nonnegative sequence of reals and k is a natural number, oscillate if $\liminf_{n\rightarrow\infty}\sum_{i=n-k}^{n-1}p(i)> ( \frac {k}{k+1} ) ^{k+1}$ . In the case that $\sum_{i=n-k}^{n-1}p(i)$ is slowly varying at infinity, it is proved that the above result can be essentially improved by replacing the above condition with $\limsup_{n\rightarrow\infty}\sum_{i=n-k}^{n-1}p(i)> ( \frac{k}{k+1} ) ^{k+1}$ . An example illustrating the applicability and importance of the result is presented.
  • 关键词:Oscillation ; Delay ; Difference equations
国家哲学社会科学文献中心版权所有