The heart of the current wireless communication systems (including 5G) is the Fourier transform-based orthogonal frequency division multiplex (OFDM). Over time, a lot of research has proposed the wavelet transform-based OFDM as a better replacement of Fourier in the physical layer solutions because of its performance and ability to support network-intensive applications such as the Internet of Things (IoT). In this paper, we weigh the wavelet transform performances against the future wireless application system requirements and propose guidelines and approaches for wavelet applications in 5G waveform design. This is followed by a detailed impact on healthcare. Using an image as the test data, a comprehensive performance comparison between Fourier transform and various wavelet transforms has been done considering the following 5G key performance indicators (KPIs): energy efficiency, modulation and demodulation complexity, reliability, latency, spectral efficiency, effect of transmission/reception under asynchronous transmission, and robustness to time-/frequency-selective channels. Finally, the guidelines for wavelet transform use are presented. The guidelines are sufficient to serve as approaches for tradeoffs and also as the guide for further developments.