摘要:The paper presents the modeling and control design of a floating piston pneumatic gearbox actuator using a grid-based Linear Parameter Varying approach. First, the nonlinear model of the pneumatic actuator is presented, then it is transformed into a 6th order Linear Parameter Varying representation with endogenous scheduling parameters. The model is simplified based on empirical considerations to solve the controller synthesis and allow fast controller tuning. The developed Linear Parameter Varying controller is tested in simulations. Moreover, using a balanced truncation-model order reduction method, the minimum order of the controller is determined, which can provide acceptable performance. The simplified controller is implemented in an embedded environment and validated against the real target. Then, the validation results are compared with a gain-scheduled PD controller and a Linear Quadratic Regulator. The results show that by taking the time-varying nature of the scheduling parameters into account, the Linear Parameter Varying controller surpasses the Linear Quadratic Regulator, which cannot handle the high-speed transients around Neutral. Furthermore, the PD controller performs slightly better in two of the four test cases, although the Linear Parameter Varying controller has a higher level of fault tolerance.
关键词:pneumatic actuator; nonlinear system; linear parameter-varying control pneumatic actuator ; nonlinear system ; linear parameter-varying control