摘要:This paper explores the effect of multiple structural breaks to estimate the parameters and test the unit root hypothesis in panel data time series model under Bayesian perspective. These breaks are present in both mean and error variance at the same time point. We obtain Bayes estimates for different loss function using conditional posterior distribution, which is not coming in a closed form, and this is approximately explained by Gibbs sampling. For hypothesis testing, posterior odds ratio is calculated and solved via Monte Carlo Integration. The proposed methodology is illustrated with numerical examples.
关键词:panel data model;autoregressive model;structural break;MCMC;posterior odds ratio