首页    期刊浏览 2025年02月28日 星期五
登录注册

文章基本信息

  • 标题:GENERALIZED BAYES ESTIMATION OF SPATIAL AUTOREGRESSIVE MODELS
  • 本地全文:下载
  • 作者:Anoop Chaturvedi ; Sandeep Mishra
  • 期刊名称:Statistics in Transition
  • 印刷版ISSN:1234-7655
  • 电子版ISSN:2450-0291
  • 出版年度:2019
  • 卷号:20
  • 期号:2
  • 页码:15-31
  • DOI:10.21307/stattrans-2019-012
  • 出版社:Exeley Inc.
  • 摘要:The spatial autoregressive (SAR) models are widely used in spatial econometrics for analyzing spatial data involving spatial autocorrelation structure. The present paper derives a Generalized Bayes estimator for estimating the parameters of a SAR model. The admissibility and minimaxity properties of the estimator have been discussed. For investigating the finite sample behaviour of the estimator, the results of a simulation study have been presented. The results of the paper are applied to demographic data on total fertility rate for selected Indian states.
  • 关键词:spatial autoregressive model; prior and posterior distributions; generalized Bayes estimator; admissibility and minimaxity; total fertility rate (TFR)
国家哲学社会科学文献中心版权所有