首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Spark for Social Science
  • 本地全文:下载
  • 作者:Graham MacDonald ; Alex Engler ; Jeffrey Levy
  • 期刊名称:International Journal of Population Data Science
  • 电子版ISSN:2399-4908
  • 出版年度:2018
  • 卷号:3
  • 期号:5
  • 页码:1-1
  • DOI:10.23889/ijpds.v3i5.1044
  • 出版社:Swansea University
  • 摘要:Urban has developed an elastic and powerful approach to the analysis of massive datasets using Amazon Web Services’ Elastic MapReduce (EMR) and the Spark framework for distributed memory and processing. The goal of the project is to deliver powerful and elastic Spark clusters to researchers and data analysts with as little setup time and effort possible, and at low cost. To do that, at the Urban Institute, we use two critical components: (1) an Amazon Web Services (AWS) CloudFormation script to launch AWS Elastic MapReduce (EMR) clusters (2) a bootstrap script that runs on the Master node of the new cluster to install statistical programs and development environments (RStudio and Jupyter Notebooks). The Urban Institute’s Spark for Social Science Github page holds code used to setup the cluster and tutorials for learning how to program in R and Python.
国家哲学社会科学文献中心版权所有