首页    期刊浏览 2025年02月28日 星期五
登录注册

文章基本信息

  • 标题:HIERARCHICAL STRUCTURE OF DENTAL DATA IN THE RANDOM EFFECTS INCLUSION APPROACH
  • 本地全文:下载
  • 作者:Tiago Peres da Silva SUGUIURA ; Omar Cléo Neves PEREIRA ; Waenya Fernandez de CARVALHO
  • 期刊名称:Revista Brasileira de Biometria
  • 印刷版ISSN:0102-0811
  • 电子版ISSN:1983-0823
  • 出版年度:2018
  • 卷号:36
  • 期号:3
  • 页码:700-714
  • DOI:10.28951/rbb.v36i3.285
  • 出版社:Universidade Federal de Lavras
  • 摘要:Data sets with complex structures is increasingly common in dental research. As consequences, statistical  methods to analyze and interpret these data must be efficient and robust. Hierarchical structures is one of  the most common kind of complex structures, and a proper approach is required. The multilevel modeling used to study hierarchical structures is a powerful tool which allows the collected data to be  analyzes in several levels. This study has as objective to make a literature review on multilevel linear models and to illustrate a three level model through a matrix procedure, without the use of specific software to estimate the parameters. With this model, we analyzed the vertical gingival retraction when using the substances: Naphazoline Chloridrate, Aluminium Chloride and without any substance. The intraclass correlation coefficient on dental level within patients showed that the hierarchical structure was important to accommodate the dependence within clusters.
  • 关键词:Covariance matrix; Henderson’s equation; mixed models; linear multilevel models; vertical gingival retraction.
国家哲学社会科学文献中心版权所有