首页    期刊浏览 2024年12月12日 星期四
登录注册

文章基本信息

  • 标题:THRESHOLD SELECTION BASED ON RANDOM MATRIX THEORY FOR GENE CO-EXPRESSION NETWORK
  • 本地全文:下载
  • 作者:Laura BARACALDO ; Luis LEAL ; Liliana LOPEZ-KLEINE
  • 期刊名称:Revista Brasileira de Biometria
  • 印刷版ISSN:0102-0811
  • 电子版ISSN:1983-0823
  • 出版年度:2018
  • 卷号:36
  • 期号:2
  • 页码:376-384
  • DOI:10.28951/rbb.v36i2.205
  • 出版社:Universidade Federal de Lavras
  • 摘要:Random Matrix Theory (RMT) methods for threshold selection had only been applied in a very low number of  studies aiming the construction of Gene Co-expression Networks (GCN) and several open questions remained, especially regarding the general applicability regardless the diverse data structure of gene expression data sets. Moreover, no clear methodology to follow at each step was available. Here, we show, that RMT methodology is, in fact, capable to differentiate Gaussian Orthogonal Ensemble (GOE) from Gaussian Diagonal Ensemble (GDE) structure for a great number of simulated data sets and that results are similar to those obtained with the reference method of clustering coefficient.
  • 关键词:Similarity matrices; threshold selection; random matrix theory; gene co-expression networks
国家哲学社会科学文献中心版权所有