首页    期刊浏览 2025年02月28日 星期五
登录注册

文章基本信息

  • 标题:Spatial trend analysis of gridded temperature data at varying spatial scales
  • 本地全文:下载
  • 作者:Ola Haug ; Thordis L. Thorarinsdottir ; Sigrunn H. Sørbye
  • 期刊名称:Advances in Statistical Climatology, Meteorology and Oceanography
  • 印刷版ISSN:2364-3579
  • 电子版ISSN:2364-3587
  • 出版年度:2020
  • 卷号:6
  • 期号:1
  • 页码:1-12
  • DOI:10.5194/ascmo-6-1-2020
  • 出版社:Copernicus Publications
  • 摘要:Abstract. Classical assessments of trends in gridded temperature data perform independent evaluations across the grid, thus, ignoring spatial correlations in the trend estimates. In particular, this affects assessments of trend significance as evaluation of the collective significance of individual tests is commonly neglected. In this article we build a space–time hierarchical Bayesian model for temperature anomalies where the trend coefficient is modelled by a latent Gaussian random field. This enables us to calculate simultaneous credible regions for joint significance assessments. In a case study, we assess summer season trends in 65 years of gridded temperature data over Europe. We find that while spatial smoothing generally results in larger regions where the null hypothesis of no trend is rejected, this is not the case for all subregions.
国家哲学社会科学文献中心版权所有