摘要:50 m fill-and-drain sequences on a hydraulically-connected ice-marginal lake likely reflects the punctuated establishment of efficient subglacial drainage as the melt season begins. The rate of change of lake stage generally correlates with diurnal velocity maxima, both in timing and magnitude. At the seasonal scale, the up-glacier progression of enhanced summer basal motion promotes uniformity of daily glacier velocity fluctuations throughout the 10 km study reach, and results in diurnal velocity patterns suggesting increasingly efficient meltwater delivery to and drainage from the subglacial channel system. Our findings suggest the potential of using an ice-marginal lake as a proxy for subglacial water pressure, and show how widespread basal motion affects bulk glacier behavior.