摘要:Shallow lakes cover >25% of Alaska’s Arctic Coastal Plain. These remain frozen and snow-covered from October to June. The lake snow is thinner, denser, harder and has less water equivalent than snow on the surrounding tundra. Itcontains less depth hoar than land snow, yet paradoxically is subject to stronger temperature gradients. It also has fewer layers and these have been more strongly affected by wind. Dunes and drifts are better developedon lakes; they have wavelengths of 5–20 m, compared to <5 m on land. Because of these differences, lake snow has roughly half the thermal insulating capacity of land snow. The winter mass balance on lakes is also different because (1) some snow falls into the water before the lakes freeze, (2) some snow accumulates in drifts surrounding the lakes, and (3) prevailing winds lead to increased erosion and thinner snow on the eastern lake sides. Physical models that extrapolate land snow over lakes without appropriate adjustments for depth, density, distribution and thermal properties will under-predict ice thickness and winter heat losses.