摘要:Alpine permafrost distribution is controlled by a great number of climatic, topographic and soil-specific factors, including snow cover, which plays a major role. In this study, a one-dimensional finite-element numerical model was developed to analyze the influence of individual snow-specific and climatic factors on the ground thermal regime. The results indicate that the most important factor is snow depth. Snow depths below the threshold value of 0.6 m lack sufficient insulation to prevent low atmospheric temperatures from cooling the soil. The date of first winter snow insulation and variations in mean annual air temperature (MAAT) are also shown to be important. Delays in early-winter snow insulation and in summer snow disappearance are shown to be of approximately equal significance to the ground thermal conditions. Numerical modelling also indicates that the duration of effective thermal resistance of snow cover governs the slope of the linear dependency between MAAT and mean annual ground surface temperatures (MAGST). Consequently, the most direct effect of a long-term rise in air temperatures on ground temperatures is predicted under a thin snow cover with early snowmelt in spring and/or where a large change in the date of total snowmelt occurs, in response to atmospheric warming.